Rough Set Theory with Applications to Data Mining
نویسنده
چکیده
This paper is an introduction to rough set theory with an emphasis on applications to data mining. First, consistent data are discussed, including blocks of attribute-value pairs, reducts of information tables, indiscernibility relation, decision tables, and global and local coverings. Rule induction algorithms LEM1 and LEM2 are presented. Then the rough set approach to inconsistent data is introduced, with lower and upper approximations and certain and possible rule sets. The last topic is a rough set approach to incomplete data. How to define modified blocks of attribute-value pairs, characteristic sets, and characteristic relation are explained. Additionally, two definitions of definability and three definitions of approximations are presented. Finally, some remarks about applications of the LERS data mining system are included.
منابع مشابه
Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملApplication of Rough Set Theory in Data Mining
Rough set theory is a new method that deals with vagueness and uncertainty emphasized in decision making. Data mining is a discipline that has an important contribution to data analysis, discovery of new meaningful knowledge, and autonomous decision making. The rough set theory offers a viable approach for decision rule extraction from data.This paper, introduces the fundamental concepts of rou...
متن کاملRough Set Theory In Data Mining Ppt
Rough set theory provides a useful mathematical concept to draw tends to serve well for data mining applications whereas the predictive model. The rough set toolkit for analysis of data (ROSETTA), which is an advanced machine learning algorithms for data mining tasks implemented in Java (33). Therefore, this paper presents the RoughSets package that allows researchers. Zdzislaw Pawlak, Rough Se...
متن کاملارائه روشی ترکیبی برای افزایش دقت پیشبینی در کاهش داده با استفاده از مدل مجموعه راف و هوش تجمعی
Designing a system with an emphasis on minimal human intervention helps users to explore information quickly. Adverting to methods of analyzing large data is compulsory as well. Hence, utilizing power of the data mining process to identify patterns and models become more essential from aspect of relationship between the various elements in the database and discover hidden knowledge. Therefore, ...
متن کاملReduction of DEA-Performance Factors Using Rough Set Theory: An Application of Companies in the Iranian Stock Exchange
he financial management field has witnessed significant developments in recent years to help decision makers, managers and investors, to made optimal decisions. In this regard, the institutions investment strategies and their evaluation methods continuously change with the rapid transfer of information and access to the fi- nancial data. When information is available ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011